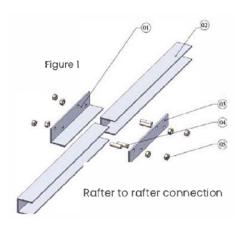
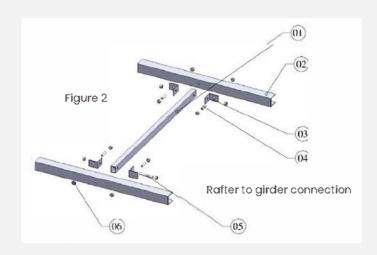
Internal Floating Roof


Pontoon Type IFR

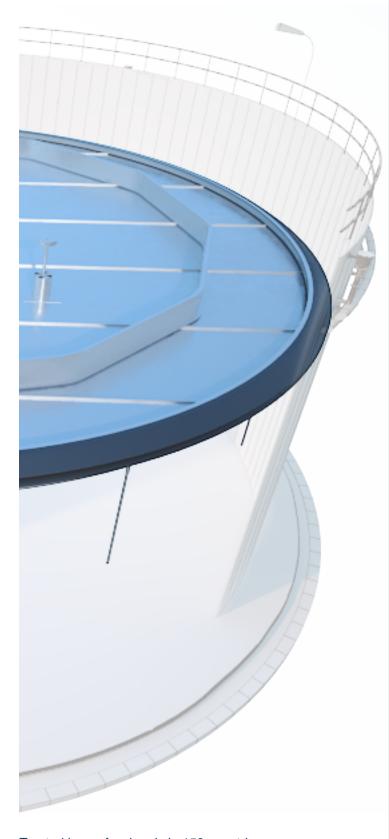
1. GENERAL

1.1 ENGINEERING

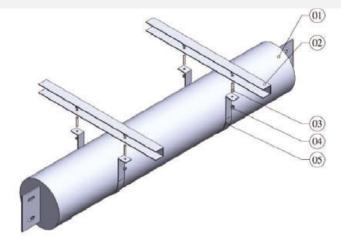

1.1.1 Aluminum Pontoon Type Internal Floating Roof is designed according to API650 Appendix H. Structure weight is minimized and provides the best price performance balance to fully meet API requirements. In the entire connections of framework structure are assembled using special joining pieces. The Joint Clamps are provided to prevent any deformation in case of a load on the connection points of Rafter and Girders.

Part List		
Object	Description	Material
1	Rafter Joint Support	Aluminium-6063
2	Rafter	Aluminium-6063
3	Connection Plate	Aluminium-6063
4	Stud, M6x20mm	Aluminium-6063
5	NUT, M6	Aluminium-6013

The system is designed to be lightweight, precise and easy to install. The legs which sit on the bottom of the tank are optionally provided in an adjustable type. The bolts are provided in stainless steel or aluminum basis according to customer demand and price performance analysis. The sealing system is provided as single & double wiper seal, mechanical seal with secondary barrier as required. These systems eliminate emission losses in the range of 95-99%.



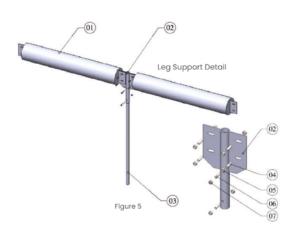
Part List		
Object	Description	Material
1	Girder	Aluminium-6063
2	Rafter	Aluminium-6063
3	Connector	Aluminium-6063
4	Stud, M6x20mm	Aluminium-6063
5	Stud, M6x50mm	Aluminium-6013
6	NUT, M6	



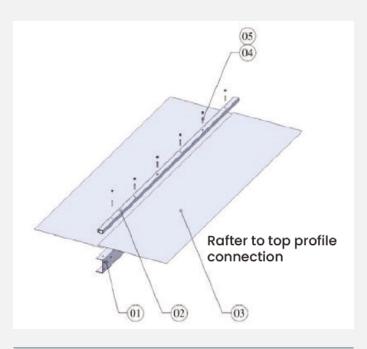
Part List		
Object	Description	Material
1	Pantoon	Aluminium-6063
2	Rafter	Aluminium-1050/H14
3	Stud, M6x30mm	Aluminium-6063
4	NUT, M6	Aluminium-6063
5	Buoy Strap	Aluminium-6013

- 1.1.2 Aluminum deck laid on an aluminum grid framework supported above the liquid surface by tubular aluminum pontoons. The deck skin for the noncontact-type floating decks is typically constructed of rolled aluminum sheets (about 1.5 meters [m] wide and 0.5 millimeter [mm] thick. The overlapping aluminum sheets are joined by bolted aluminum clamping bars that run perpendicular to the pontoons to improve the rigidity of the frame. The deck skin seams can be metal on metal or gasketed with a polymeric material. The pontoons and clamping bars form the structural frame of the floating deck.
- **1.1.3** Internal Floating Roof system is designed, fabricated, and installed in applicable international codes.
- API Standard 650 "Welded Steel Tanks for Oil Storage
- Emission Factor Documentation for AP-42 Organic Liquid Storage Tanks
- EN 14015
- New Source Performance Standards (NSPS) for Volatile Organic Liquid Storage Vessels
- EEMUA 213
- **1.1.4** Buoyancy calculations shall be performed as per the specific stored liquid density of 0.7.
- **1.1.5** All internal floating roofs shall include buoyancy required to support at least twice its dead weight. (including the weight of the flotation compartments, seal and all other floating roof and attached components), plus additional buoyancy to offset the calculated friction exerted by peripheral and penetration seals during filling.

- **1.1.6** All internal floating roofs with multiple flotation compartments shall be capable of floating without additional damage after any two compartments are punctured and flooded.
- **1.1.7** The internal floating roof shall be designed to meet safely support at least two men walking anywhere on the roof while it is floating without damaging the floating roof.
- **1.1.8** A vapor-tight rim (or skirt), extending at least 150 mm (6 in.) above the liquid at the design flotation level, shall be provided around both the internal floating roof periphery and around all internal floating roof penetrations.


1.2 STRUCTURE

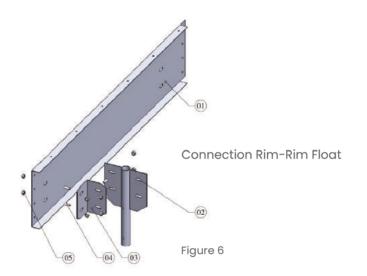
1.2.1 Rim Connections


- · Because of setovered bolts on rim plate making the assembling works easier on site.
- Rim plate to be used 3m. instead of 6m to increase balance of system.
- · Because of setovered bolts on rim plate making the assembling works easier on site.
- · Rim plate to be used 3m. instead of 6m to increase balance of system.
- Lap jointed Rims decrease the number of connection plates, total weight and forced to system further balanced.

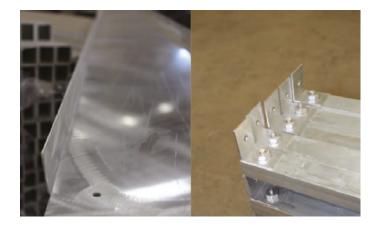
1.2.2 Rafter Connections

- · All connection points to be fixed by equal angle for demanding further strength to connection points.
- · Joint plates with bolted connections provide ultimate strength on fix points.
- · Any rafter connection points cannot be come upon pontoons by software basis designs.
- · All connection points to be drilled on facility and girders delivered to site area to be pre-assembled for easier erection progress.
- · Setovered bolts make the assemblies easier.
- · 40 mm width rafters and 30x20 mm sq. tubing provide less weight and uniform load balance.

Part List		
Object	Description	Material
1	Pantoon	Aluminium-1050/H14
2	Leg Support	Aluminium-1050/H14
3	Leg Pipe	Aluminium-6063
4	STUD, M10x30mm	Aluminium-6063
5	NUT, M10	Aluminium-6013
6	STUD, M8x70mm	Aluminium-6013
7	NUT, M8	Aluminium-6013


Part List	Part List		
Object	Description	Material	
1	Rafter	Aluminium-6063	
2	Top Profile	Aluminium-1050/H14	
3	Cover	Aluminium-6063	
4	STUD, M6x40mm	Aluminium-6063	
5	NUT, M6	Aluminium-6013	

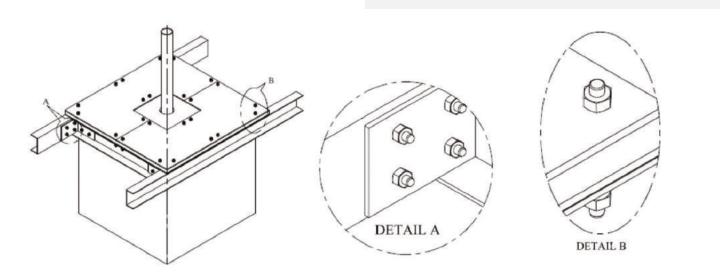
1.2.3 Leg Connections


- Leg connections on rim plate to be supplied from the rim connection points, accordingly sloshing down cannot be appeared in time.
- Leg fixment holes to be provided on site for arrangement of the leg lengths because of bottom plate slopes.
- · Legs can be arranged as rafter or pontoon connected according to the requirement of tank design.
- · Ceiling suspended type connections can be supplied instead of legs.
- · Polyamide or teflon insulating pads sit on the bottom of the tank

Part List		
Object	Description	Material
1	Rim Profile	Aluminium-1050/H14
2	Leg Support	Aluminium-1050/H14
3	Connection Profile	Aluminium-1050/H14
4	Stud, M10x30mm	Aluminium-6063
5	NUT, M10	Aluminium-6063

2. MANUFACTURING

Manufacturing has been oriented in order to make installations most effective at site. Thanks to the ERGİL's experiences that have been coming over the years considering the problematic situations reflecting to our manufacturing facilities. All relevant bolt holes are delivered as drilled all openings and negotiators are pre-assembled, all regarding plates are delivered bended in our workshop.


Parts are delivered to site with full intercompatibility with each others. The systems has been automated to prevent staff-based mistakes.

Parts are manufactured perfectly and the compatibility has been confirmed by QC. Each pieces are inspected and reported by means of strengths, pressure resistance, sealing tests, material deformations caused by goods are detected and these are removed from the system by the quality control.

Each piece of material is individually packaged and tagged. A copy of all listings is delivered in the quality documentations to the relevant department of the client to ensure so that the maximum product performance is achieved.

1.2 AUXILIARY EQUIPMENTS AND MATERIAL

2.1 Standart Roof Equipments

2.1.1 Aluminium or Stainless Steel Hardware

2.1.2 Sample Pipes or Wells

A sample well may be provided to allow liquid stock sampling.

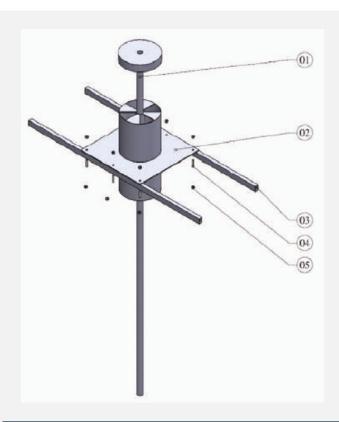
2.1.3 Ladder Wells

Some tanks are equipped with internal ladders that extend from a manhole in the fixed roof to the tank bottom.

2.1.4 Vacuum Breakers

The purpose of a vacuum breaker is to allow for the exchange of vapor and air through the floating roof during filling and emptying.

2.1.5 Deck Legs


Deck legs prevent damage to fittings underneath the deck and allow for tank cleaning or repair by holding the deck at a predetermined distance from the tank bottom.

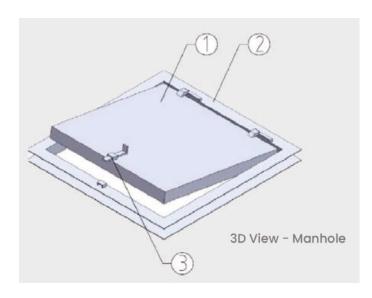
2.1.6 Deck Drains

Deck drains permit removal of liquid collected from the surf ace of floating decks.

2.1.7 Gauge Hatch / Sample Ports

Gauge hatch / sample ports provide access for hand gauging the level of stock in the tank and for taking samples of the tank contents.

Part List	Part List		
Object	Description	Material	
1	Leg Cover	Aluminium-1050/H14	
2	Body Support	Aluminium-6063	
3	Grider	Aluminium-6063	
4	STUD, M6x50mm	Aluminium-6063	
5	NUT, M6	Aluminium-6063	



2.1.8 Access Hatches

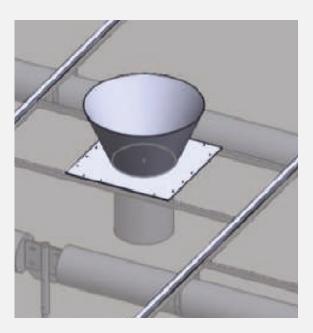
An access hatch consists of an opening in the deck with a peripheral vertical well attached to the deck: and a removable cover to close the opening.

2.1.9 Anti-Rotations

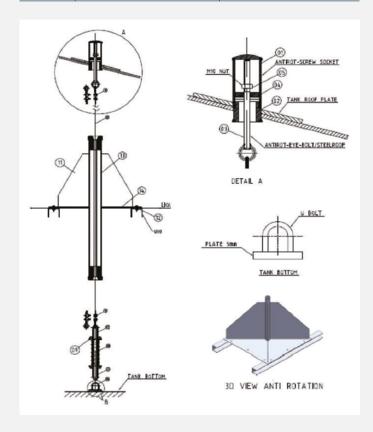
Anti-rotation device is a guide pole that is fixed at the top and bottom of the tank.

2.1.12 Polyamide or teflon insulating pads

Insulating pad material, polymer, elastomer, or adhesive must be pre-approved by the Purchaser.

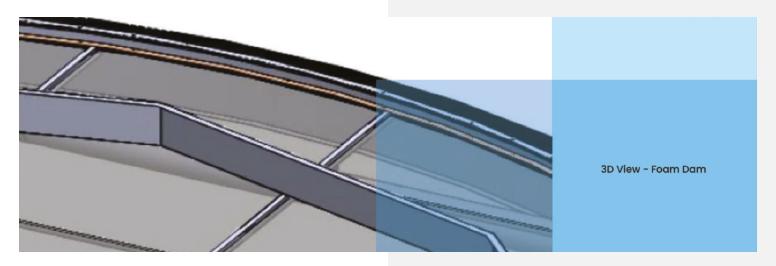

2.1.13 Column Wells

The most common fixed-roof designs ore normally supported from inside the tonic by means of vertical columns.

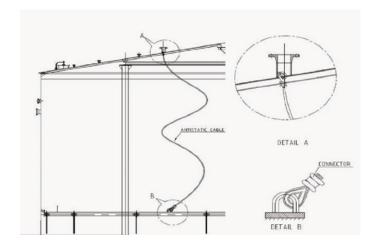

2.1.14 Guide Polee and Welle

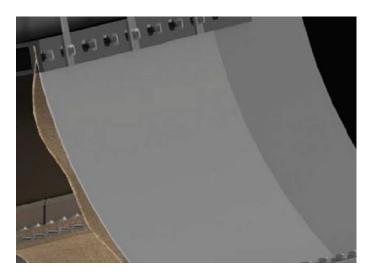
The guide pole passes through a well in the deck.

Part List		
Object	Description	Material
1	Cover	CS Galvanizet
2	Coupling	CS Galvanizet
3	Eyelet	CS Galvanizet
4	Washer	CS Galvanizet
5	Nut	CS Galvanizet
6	Bottom Ring	CS Galvanizet
7	Tensioning Rod	CS Galvanizet
8		CS Galvanizet
9		CS Galvanizet
10		CS Galvanizet
11		Aluminium-1050/H14
12		CS Galvanizet
13		CS Galvanizet
14		Aluminium-1050/H14



Part List		
Object	Description	Material
1	Manhole Cover	Aluminium-1050/H14
2	Manhole Frame	Aluminium-1050/H14
3	Manhole Handle	Aluminium-1050/H14

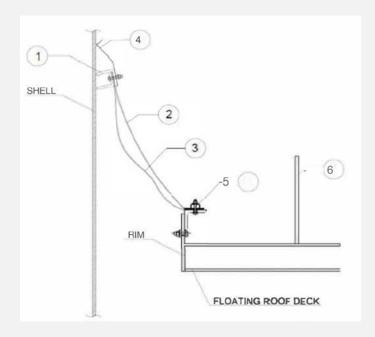



2.1.10 Foam Dam

A foam dam shall be fabricated and installed in compliance with NFPA 11.

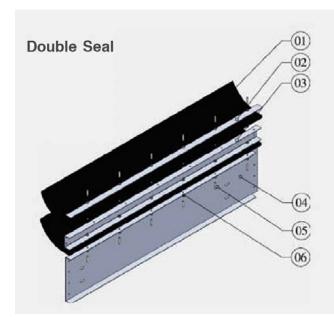
2.1.11 Anti-Static Cable

Connected to fixed roof by ropes made by stainless steal.

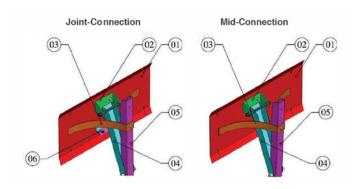


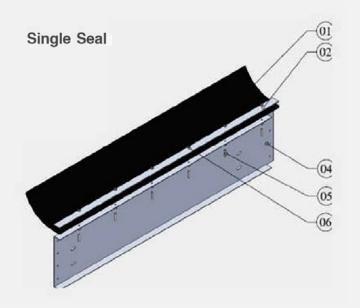
2.1.15 Wiper or Mechanical Shoe Seals w/ Secondary Barrier

Wiper seals are commonly used as primary rim seals for internal floating roof tanks.


Secondary seals may be used to provide some additional evaporative loss control over that achieved by the primary seal.

No.	Part Name	Material
01	Double Wiper / Wiper Seal	Nitril / Polyethylene
02	Compression Plate	A653/ G90
03	Fabric/ Teflon Envelope	Teflon
04	Ground Shunt, Thk.0.5mm	ASTM SA 240 gr. 304
05	Rim Clamp, Thk.3mm, C30x900 Lg	A653/ G90





Part List Double Seal		
Object	Description	Material
1	Double Seal	Polyethylene
2	Metal Sheet	Aluminium-2050/H14
3	Profile	Aluminium-6063
4	Rim Profile	Aluminium-2050/H14
5	Stud, M6x50mm	Aluminium-6063
6	NUT, M6	Aluminium-6063

Characterized by a metallic sheet (the "shoe") that is held against the vertical tank wall.

Part List Single Seal		
Object	Description	Material
1	Double Seal	Polyethylene
2	Metal Sheet	Aluminium-2050/H14
3	Rim Profile	Aluminium-2050/H14
4	Stud, M6x50mm	Aluminium-6063
5	NUT, M6	Aluminium-6063

Mechanical Seal Isometric Details

Part List			
Object	Description	Material	
1	Seal Ring	AISI 304	
2	Bracket	AISI 304 (V2A)	
3	Spring-Sheet	Spring-Steel 14310	
4	Connection Profile-1	AISI 304	
5	Connection Profile-1	AISI 304	
6	Connection Plate	AISI 304	

3.2 Material Specification

Item	Specification	Material
Deck		
Deck Plate	1500 x 0.5 mm thk	AL 1050/1-114
Sealant Adhesive	High Density Scaflex	
Structure		
Rafter & Girder	Extrusion 2mm thk.	AL6063
Rim Plate	Formed sheet - 2mm thk.	AL6063
Seal Plate	Extrusion 2mm thk.	AL6063
Seal Ring	Extrusion 2mm thk.	AL6063
Anti-Rotation	Extrusion 4mm thk.	AL 1050/1-114
Pantoon Strap	2mm thk.	AL 1050/1-114
Rim Clamp	Extrusion 2mm thk.	AL6063
Support System		
Support Legs	Pipe - 1" 3mm thk.	AL6063
Leg Sleeve	Pipe - 1 1/4" 3mm thk.	AL6063
Leg Sleeve Reinforcing Plates	Sheet - 0 .090" thick	AL 1050/1-114
Leg Insulating Pad	Molded	Polyamid / Teflon
Support Cables	Wire rope 8mm thk.	SS304
Cable Attachment Plates	Sheet - 14 gauge	SS304
Anti-static Rope	Wire rope 4mm thk.	SS304
Spring	Spring Steel	SS302
Wells & Appurtenances		
Pipe & Gauge Wells	Sheet 4mm thk.	AL 1050/1-114
Seals for Wells	5 mm thk. / 15 mm thk.	Buna-N / PE
Mechanical Shoe		
Shoe Plate	Sheet - 1.5mm thk. / 1.2mm thk.	CS Galvanised/ SS304
Shoe Seal Spring	Sheet - 1 mm thk.	SS301
Fabric	0,38mm thk.	Teflon
Secondary Vapour Barrier	Single Wiper / Dual Wiper Lip	PE /Buna-N
Support Leg I Scissor	Sheet - 10mm thk. / 3mm thk.	AL 1050/1-114
Fabric Seal Clamp	1.5mm thk.	AL 1050/1-114
Ground Shunt	0.5mm thk.	SS304
Compression Plate	1mm thk.	SS304
Counter Weight	30mm thk.	AL 1050/1-114
Wiper Seals		
Wiper Seal	300mm wide 15mm thk. / Extrusion	PE / Buna-N
Seal Clamps	Sheet 2mm thk.	AL 1050/1-114
Fasteners		
Bolts	M6 /M8 /M10- Stud /Bolt	AL6061 / SS304
Nuts	M6/M8/M10	AL6061 / SS304

^{*} Material can be changed as per customer requirement.

ProductRecommendations

Flame Arrestor

End-Of-Line, With Automatic Opening Hood, Deflagration

Model: 312

Storagetech™ Flame Arrestors (End-of-line, with Automatic Opening Hood) are passive devices that prevent the propagation of a flame or fire from entering into an opening in a pipeline or vessel discharging flammable vapor. As different from model 310, Model 312 end of line flame arrestor's weather hood is designed to react fire instantly tanks to it's fusible link, which is melted during the fire and let the weather hood release the gas/fire to the atmosphere.

Flame Arrestor

Vertical, In-Line, Detonation

Model: 320

Storagetech™'s Model 320 In-line Detonation Flame Arrestor (also called flame arrestor or fire arrestor) is designed for installation in gas pipelines. Detonation occurs when a flame travelling through the pipeline reaches supersonic velocities, usually as a result of the pipeline configuration or pipeline surface roughness. Changes in gas density and pressure causes the flame velocity to metamorphose from subsonic to supersonic.

Storagetech™ manufactures storage tank equipment, such as flame arresters, breather valves, gauge hatches, floating roofs, and floating suction pipe.

Flame Arrestor

Horizontal, In-Line, Detonation

Model: 321

StoragetechTM's Model 321 In-line Detonation Flame Arrestor (also called flame arrestor or fire arrestor) is designed for installation in gas pipelines. Detonation occurs when a flame travelling through the pipeline reaches supersonic velocities, usually as a result of the pipeline configuration or pipeline surface roughness. Changes in gas density and pressure causes the flame velocity to metamorphose from subsonic to supersonic.

